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ABSTRACT

Computer oriented algorithms for several laborious computations
frequently encountered i switching theory and logic design are
presented. They are algorithms for the computation of designation
numbers, functional compuosition. detection of relations between
Boolean functions, symbolic expansion of Boolean cxpressions, and
approximate minimizatiwn of Boolean functions. These algorithms are
useful in the construction of man/machine interactive systems for
logic design automation. Machine independence and modularity are
emphasized in the development of these algorithms. Tiey have been

programmed on the LINC computer,



No.

TABLE OF CONTENTS

1. Introduction

2. Designation Numbers

8|
AR

R

2.5
2.6

Introduction

Table of Combinations and Desigiation NUMbErs .........cooooowoovovoommmmmio
Computing *liec Designation Number of a Boolean Function

2.3.1 Boolean Expression in Infix Notations

2.3.2 Converting Boolean Expression into Early Reverse Polish Form

Program Implementation

24.0 The Program to Obtain an Early Reverse Polish String

24.2 The Program to Obtain 1 Designation Number from a Reverse Polish String
Composite Functions

Remark

3. Functional Relations

31
32
33
34
3.5

Introduction

Equality and Implication

Functional Equivaience

Comparing Boolean Functions with Don't Cares

Example

4. Boolean Expression Minimization

4.1
42

4.4
4.5
4.6
4.7

Introduction
Cubical COMPIEXES ...t et ee e
4.2.1 StarProduct (Consensus Operation)

4.2.2  Sharp Operation (#-operation)

Prime Implicants of a Boolean Function

4.3.1 Quine-McCluskey Tabular Method
4.3.2 Ilterative Consensus Method

4.3.3 Cube Enlargement

Approximate Minimum Cover ........oovvevecvviioiin.

Program Implementation ...........oou...........

Example

Conclusion

5. Computer Expansion of Boolean Expressions .

5.1
5.2
5.3

Introduction
Algorithms for Applying DcMorgans Theorems
An Algorithm for Applying Associative Laws and Distributive Laws

Page



No.

0.

TABLE OF CONTENTS

(continued)

54 Program hmiplementation

S5 CONCIINON ettt ettt sttt et s st ee e s st ee st st e naee s e sttt
COMCIUSION e ettt et ettt e te et ee et oot et ee e st e e sees s s e estns
7.1 The Flow Chart for Transtforming a Boolean Expression into Early Reverse

POlISh FORIN e et et et e erse et en e,

7.2 The Flow Chart for Boolean Expression Minimization  ......ococooveevooooeeeeeoeos oo,
7.3 The Flow Chart for Boolean Expression Expansion

Bibliography

Page
37
37
39
4]

46
52
62



+

;.-«

iy

V-

LIST OF TABLES

No. Page
I The Table of Combinations of the Function F(ABC) = AB + C' 3
2. Coordinate *-product

3. Coordinate =operation a, #b 15



-vi-

LIST OF FIGURES

No.

1. The Roles of the Designation Number in Logic Design

A Composite Circuit Composed of Two Stages and Three Components
Nlustrations for *product of Cubes

Arrangement of Cubes for Obtaining an Approximate Minimum Cover

Stack Structure

XA W

Changes of Stack Contents and Puinters INlustrating the + operation and * operation

(a) Preceding the + Operation or the * OPEration ..........cccomvevoveieeneeeoere oo

(b) After the + Operation

(c) After Step 1 of the * Operation

(d) After Step 2 of the * Operation
Three Key Steps in the Process of Applying Algorithm 3 to an Expression

A Computer Aided Logic Design System



A LOGICAL DESIGN AUTOMATION UTILITY

1. INTRODUCTION

Pue 1o ther grear computational speed and simulation abihty. digital computers are bemg used in designing
and analy zing new computers, and this application s becoming wider. Breuer! has dwided the pioblems in design
automation ot digital  computers into  three mam meas:  Preconstruction analysis, hindware  design and
mplementation, and software generation. Preconstruction analysis deals primatily with the use of general purpose
svstem simulators mtrving to determine an optimal functional configmiation for a new computer system?. Main
problems under hardware design include automatic logic generation. Boolean logic minimization, and logie
simulations. Problenis - physicat implementation include printed circuit layout, the assignment of circuit cards
to backboards. the placement of circun cards on backboards, and the interconnection of terminals. ete. Typical
problems - auvtomatic sotiware generation nclude the use of a meta-compiler as an aid in generating a new
compiler. and autonutic generation of 1est routines for detection and diagnosis of component failures®*,

I general. the wsage ot diginal compurers i hardware design and implementation has been primarily
concerned with the genersnion and maintenance of fites for recording logic network structures. placement of logic
cards, development of wiring lists. and other nanufacturing oriented data®. Such programs do not alter the
engmeer’s logic design. but merely clieck its vahidity under certain nuanufacturing constraints and develop
appropriate  fabrication informuttion.  Although great interest has been expressed in developing  computer
algorithms for automating tasks of logic design, only the teasibility has been demonstrated®. With the increasing
complexity of digital systems and resulting need for greater control and accuracy in the design phase from
architecture 1o implementation. it is crucial that efficient algorithms for automated logic design he developed and
implemented.

The purpose of this research is 1o develop some computer-oriented algorithms for the manipulation of
switehing functions in logic cesign. Although some compater algorithms have been developed to manipulate

7. most of these are for < pecial purposes and dependent on the particular systems and

switching functions®
languages used by the developers. Hence the algorithms are not casily applicable without having the same types
of facilities. In this development. however, particular emphasis has been put on modularity and machine

independence. It is certain that the users can casily program these algorithms on their own computers.



2. DESIGNATION NUMBERS

21 INTRODUCTION

Boolean algebia can be apphied 1o deseiibe reliionshup between npint and output vanables of o switching
Junctien. Toownire o Boolean expression desenibing the wnput-ourput relation of o switchmg cncnr, however, 1wo
problems appear. Fusty . there are general many Boolean expressions wineh can deseribe 1he simre swatching
tncton. Secondy. the algebrane mampulanon of Boolean expression nor only requires considerable skl and
tnagiation together with a thorough knowledge of Boolean algebra. but s also ditficulr to be mechampzed.

The solution to the fust problem s 4 representation wineh s wgue tor a given tunction. Winle the solution
te the second problem s 1 conase and convenient representation teasible for necharmcal compuration, A
representation which can solve these two problems simutancously s the designation number®.

The role played by designation number 1 logie design process can be expressed m the following:

Tinnal BBoolean —p  Devgnatio =p Mampulation of N
aremt. TP tunctions numbers Designation
diagram numbers
Verbal
staternent of Funenon
problem tuble

Final result o pg ol —— Final

m terms of i Boolean arcut
designation CXPIessions dragram
numbers

The Roles of the Designation number in Logic Design

Figure |

In 1his Tigure, the double-hned arrows refer 1o problems that mvolve only Boolean algebra and 1he computation

methods: the smgle-lined arrows refer to procedures umque 1o the digital computer circuil problem.

2.2 TABLE OF COMBINATIONS AND DESIGNATION NUMBERS

Input-output relation of 4 Boolean function can he expressed by using o table of combinations which is 2

table histing valnes of the tunction for ail possible combmations of values of input varables. For instance. the



switclimg tunction
FIABC) = AB+(’

fas the able of combimations given i Table |,

A B C] AB+C
0 0] 0 0 [
| 0 0 | 0
2 0 | 0 |
3 0 | | 0
4 | 0 0 |
3 | 0 ] 0
O | | 0 ]
7 | ] | |

Table |

The Table of Combinations of the Function F(ABC) = AB+C’

In the table. mput combinations are listed according to the value ol their BCD (binary coded decimal). When this
natural order 1s understood, the last column (ie.. the column of function values) only is sufficient to describe
the function. This column of binary digits taken as a binary number is called the designation number of the
Boolean function.

Simtlarly the column of binary digits under an input variable in the table is called the designation number of
the nput variable. Thus the designation number of the input variable C is 01010101 and that of the function F
is 10101011. For a function of n variables, the designation numbers of the function and input variables have 2"
digrts because there are 2" combinations of the values of input variables,

It one changes the order of input variables, the designation numbers of input variables have to be changed,
and the designation number of the function changes consequently. Therefore, when we talk about the
designation number of a Boolean lunction, the sequence of input variables must be clearly specified. With the
order of variables specified, the designation number is a unique and compact representation of a Boolean

function.

2.3 COMPUTING THE DESIGNATION NUMBER OF A BOOLEAN FUNCTION

The designation number of a function can be computed by substituting designation numbers of input variables

into the Boolean expression describing the function and then perform logical operations bit by bit. The order in



4.

which logical operations are performed is specified by the explicit and implicit hierarchy in the syntax of the
expression. For manual computation, this order is not difficult to see. For muchine computation, however, it is
much more efficient if the order of togical operation is the order of appearance of operator symbols in the
expiession. Therefore. the first step in this computation is to transform the given Boolean expression — generally

in infix notation — into a reverse Polish form.

2.3.1 Boolean Expression in Infix Notations

A Boolean expression in infix notation is defined 1ecursively us follows:;

. Any alphabetic letter is a Boolean expression,
2. If A and B are Boolean expressions, then so are (A+B) and (AB).

3. If Ais a Boolean expression, then so is A’

Only symbol strings satisfying the above rules are Boolean expressions in infix notation and no others. A+B, AB,
and A" mean A “OR™ B, A “"AND" B. and A “NOT" respectively. Parenthesis pairs can be omitted if their
omission does not give rise to ambiguity. Thus the symbolic convention chosen here is the one most commonly
‘used.

Consider the Boolean expression in infix notation

F(ABCDEHKLMN) = (A + CD + C(D+E)"(M+N) + H + K)'L

To compute the designation number of this function. one can perform the togical operations in the following

order: *

l. C D

2. A+CD

3. D+E

4. (D + E)’

5. C (D + E)Y

€. M +N

7. CD+E) M+ N)

8. (A+CD)+C(D+E)'(M+N)
9. (A+CD+C(D+E)’(M+N))+H
|o.X=(A+CD+C(D+E)'(M+N)+H)+K
1. X’

12. X'L

*This order is the one implied in the reverse Polish string obtained using the algorithm of the next sub-

section,



Unless the expression is in sum-of-products form or product-of-sums form (namety, normal forms), the
procedure of finding the order of logical operation is difficult. Since the expression given is generally not in s
normal form, ecither transformation to a normal form or to a reverse Polish string is required. A normal form
transformation, namely expansion of Boolean expressions, will be discusscd in Chapter 5.

The algorithm to transform a Boolean expression into a reverse Polish form s a slight modification of the well
known algorithm which transforms an ordinary arithmetic expression into its reverse Polish form?. This algorithm

is discussed in the following subsection.
2.3.2 Converting Boolean Expression into Early Reverse Polish Form
A Boolean expression in early reverse Polish form (ERP) is defined recursively as follows;

l. Any alphabetic letter is an ERP form.
I A and B are ERP forms, thrn so are AB+, AB', and A’

to

(9]

There are no others.
The use of the reverse Polish notation to represent a Boolean expression has the following advantages:

. The operators appear in the order in whieh the computation is carried out,

2. It climinates the necessity of parentheses.

The carly reverse Polish uotation rather than fate reverse Polish is adopted, because the mechanization of
transforming to the ERP form requires smaller push-down store.

The essential rules of converting Boolean expression into ERP notation are us follows:
I If s i a variable, it is transcribed directly to the output.

2..10f s, is a left parenthesis following a variable, a “NOT” operator, or a right parenthesis, first a

logical “AND" sign *.” and then a left parentliesis are put to the push-down list N.

3. 0 5, is an operator, the top entry (called E) of the list N is examined. If E is an operator not
weaker than 5, in the operator precedence given in the list below, then E is transcribed to the
output. The process repeats for each top entry of the push-down list N until it js empty, or the
top entry is a left parenthesis or an operator weaker than S When this happens 5; is transcribed

to the push-down list N.

The List of Operator Precedence

1. '( NOT )
2. *( AND )
3. +(O0R)

4. ® ( Exclusive-OR )



4. If 5 is i right parenthesis, successive top entries are transeribed from the list N to the output

until a left parenthesis is reached. which is then deleted.

5. W variable or o complenented variable is following a variable, a “NOT™ perator, or u right

TSR

parenthesis, then a " is put o the output,

0. After the fast symbol of the Boolean expression has heen dealt with, the ‘remaining entries in

the list N are transeribed 1o the output,

In general. the symbols of the Boolean expression are examined one by one from left to right. Variable
symbolbs are transeribed as soon as they are encountered. Operator symbols are held in a push-down store N until

conditions for their transeription are satisfied. The process is more clearly deseribed in Appendix 8.1,
2.4 PROGRAM IMPLEMENTATION
24.1 The Program to Obtain an Early Reverse Polish String

The algorithm for chunging an Boolean expression to an early reverse Polish string is shown in Appendix 8.1.

An operator code und its hierarchy number are stored alongside in the push-down list N. The hierarchy
number for the unary operator “NOT™ iy 14, while those for binary operators are “AND™ 12, “*OR™ 10. and
“Exctusive-OR™ A, The hicrarchy numbers for the right and the left parentheses are 04 and 06 respectively.

To make sure that the input Boolean expression is well-formed, the following rule is used to check the reverse
Pobish string obtamed. This v because the input Boolean expression is well-formed if and only if the reverse
Polish string obtained is also well-formed. Lach symbol in the string is given a weight. The weights of hinary
operators “AND COR and CExclusive-OR™ are 1 that of unary operator “NOT™ is 0 and that of any
specitied wvariable v 10 kuch unspeettied symbol s arbitrary given a weight of 100. Then the revei.e Polish
string s well-tormed af and only it the sum of the weight of all symbols in every proper tail of the string is
nonnegative. and the sum of the weight of all symbols in the whole string is  }. A tail of a string w = xy is y.

and v s proper it x s not a null string,
2.4.2 The progrum to Obtain = Designation Number from a Reverse Polish String

o performing “AND.” “OR.” “NOT.” and “Lxclusive-QR’ operations, each variable of the string is
represented by u vector (designation number). The length of the vectors depends on the number of variables of
the tunction. Luch vector of a k-variable function have 2¥ binary bits. Though each word of the LINC has I2
bits. ouly the upper 8 bits are used. For byte oriented muchines. there will be o memory wuste, We could
construct and store these vectors in their full length, and use them in the computation of designation numbers.
However, since these vectors are generally very long. it would be very uneconomical both in time and in memory
space. Therefore, we divide each vector into 8-bit (i.e.. 1-word) sections, and caleulate succeessive sections of these
vectors ineach iteration of the process. This is possible because bit patterns of the vectors change in a regular

way. The first, second, and third variable vectors repeat with the pattern of 01010104, 00110011 und UH00Y] 11



e— s

)

wspeetively. Vectors from the fourth variable and on are combinations of 0 (00000000) and 1 (11111111 ) ina
simple and regular way'.

For a Boolean function of u variables, the computation of designation number is divided into m = 273
iterations. I the first iteration. the reverse Polish string is scanned from the lel't end ro e sight sl aisd el
tme ane eperator is met an operation is exeeited using the first words of variable vectors only. Similarly. in the
second iteration, operations are executed using the second words of variable vectors only. The whole
computation ends at the end of the m-th iteration. In each iteration, the string is scanned from the beginning to
the end, and the section of each variable vector caleulated as follows.

A register is provided for iteration count and for indicating whether the 8-bit sections of the fourth to
fifteenth variable wermss i Uik Sl Sommse & 8 & § B O Waough bic T1 iidicaie tie b patierns of ine
fourth ihrough the fifteenth variable vectors respectively. Thus a O (or 1) in the i-th bit indicates that the i+3rd
variable vector is O (or T) i the current iteration. The content of the register is set to 000000000000 in the first
iteration, and indexed by | after each iteration. For example. in the tenth iteration the content of the register is
000000001001, which indicates that the vectors of the fourth and the seventh variables are T's, while those ol
other variables exeept the first. second. and the third are O's.

Fhis approach has an additional advantage of not requiring caleutation of variable vectors sach time the

number of variable is changed.
2.5 COMPOSITE FUNCTIONS

Most switching cireuits are composed of severyl stages. The inputs to higher stages are no: all pure variables
(ie.. primary input variables), some of then, 12+ the outputs ol previous stages. The block diagram of Figure 2
shows a- cireuit composed ol two stages wi bree component cireuits fy T, and T, The inputs of circuits f,
and f, are pure variables A, B, and C. and wheir outputs are labeled | and f, respectively.

Therefore, l‘l = I‘I(A.B.(') (2.5.1)

f,(A.B.C) (2HSY)

[

and
The circuit £, has inputs I). 1, D, E. and output labeled F.

F=FdI .I,.D. E) (25.3)
is the composite function, because £y f, are not pure variables: F is a Tunction ol pure variables A, B, C, D, and
E because fy -t are functions of A, B, and C. To obtain the designation number ol F(A,B.C.D.E) we substitute

equations (2.5.1) and (2.5.2) into equation (2.5.3) Tirst, and then calculate the designation number of the

resulting expression. A program is developed for this substitution.
2.6 REMARK

By translating a Boolean expression into an carly reverse Polish string, the computation ol the designation

number for any Boolean expression containing “AND,” “OR.," “NOT," and “Exclusive-OR" operators becomes



A Composite Circuit Composed of Two Stages
and Three Components

Figure 2

smple. However. because the procedure to compute  the designation  number of a function given in
sum-or-products - formis abo pretty straight forward, we can expand  the  Boolean expression into
sum-of-products torm mstead of translating into a reverse Polish form. For Boolean expressions containing the
“Exclusiwe-OR™ operator. however, the normal form expansion  becomes very complicated. Therefore, the

algonthin hased on reverse Polish translation is a much reasonable approach,



3. FUNCTIONAL RELATIONS

3.1 INTRODUCTION

Designation numbers can be used effectively to tind relations between functions. In this chapter, we shall
discuss how designation numbers can be used to achieve this.

Many different expressions can represent the same function. But given a varighle sequence. all different
expressions of the same function have a unique designation number. Equality of Boolean expressions can,
therefore, be detected by comparing their designation numbers.

Two different functions have different designation numbers based on the same variable sequence. Very often,
however, different functions are considered to be equivalent, if their designation numbers can be made equal by
fixing the variable sequence of one function while changing the variable sequence of the other function in all

possible ways. For example, the functions (with the variable sequence shown inside the parenthesis pair)
F(ABCD)=A + B
G(ABCD)=C +D

are different. Designation numbers of F and G are 00001111 11111111 and 01110111 01110111 respectively.
These two functions are equivalent, however, because the designation number of F(ABCD) is identical to the
designation number of G(CDAB). Detection of functional ¢ Juivalence is important in logic design, because
equivalent functions can he realized by identical networks. *

Other functional relations such as the implication relation can also be detected by comparing designation

numbers,
3.2 EQUALITY AND IMPLICATION

Equal functions have identical designation numbers based on the same variable sequence. Therefore, we can
casily detect equality of two functions by comparing to see if their designation numbers match.

The implication relation between two functions is also detectable by comparison of their designation numbers.
F implies G if and only if in all bit positions in which F has a 1, G also has a 1. The detection of implication

relation is useful in residue test'©.
3.3 FUNCTIONAL EQUIVALENCE
Although detection of functional equivalence is very important in logic design, there is still no efficient

detection algorithm available at present. Before a more efficient algorithm is available, the best we can do to

detect functional equivalence is by comparing designation numbers with the variable sequence of one of the

*Functional equivalence ohtainable by complementing variables is not considered here.



functions varyig in all possible ways. This exhaustive approach becomes feasible only with the aid ol high speed
digital computers.

The essential part of tunctionyl equivalence detection s, therelore, the algorithm ol computing all possible
permutattons o a variable sequence. The method developed by K. Harada'' s adopted here. This method
generates all Hamiltonian circuits of a4 non-oriented complete graph. The variables ol 4 Boolean lunction are
considered as the vertices of the graplr, and each Hamiltonian circuit corresponds to a variable sequence. All
permutations of wvariables can be obtained by rotating variable sequences corresponding to all Hamiltonian
n-|

9

!
circuits. For u graph with n vertices. there are -(L,I—)- Hamiltonian circuits. The variable sequences

corresponding to these Hamiltouian circuits are then rotated n times clockwise and n lil.l-l(‘S counterclockwise 1o
obtain L0 IL (n+n) = n! permutations without duplication or omission.

Suppn.\c functions F and G lave the same number ol variables and their equivalence is to be detected. The
designation number of F (with a fixed variable sequence) is compares’ with that of G (with the same variable
sequence as that of F iuitially). If their designation numbers are different. 4 new variuble sequence and the
corresponding desiguation number are computed for G. The new design2tion number ot G is then compared with
the designation number of F. This procedure continues until the designation number of F is equal to g
designation number of G, in which case I° and G are equivalent: or all designation numbers of G corresponding
to all possible permutations of its vanuble sequence ave been compared, in which case F and G are not

equvalent,
3.4 COMPARING BOOLEAN FUNCTIONS WITH DON'T CARES

A Boolear function may have don't care conditions. These don’t care conditions can be specilied in ihe form
of a Boolean Tunction cailed don't eare function having the sume variables as the given Boolean function. A
functon with don’t care conditions. tlierefore. consists ol two component functions: a care Sunction which
specifies input combimations for which the function lus vilue 1, and a don't care function which specifies don't
care input combinations, Denote the care Tunction and the don’t care function ol a function F by F and F
respectively. To compare ¥ and G for equality, implication or equivalence, we compute designation numhers of
e

to form a mask. Wc then compare designation numbers ul E .md G, ignoring bit positions in wlich the mask

G, uand Gy separately. Designation numbers of k, ad G are added together (component-wise ORing)
has 1.
3.5 EXAMPLE

Consider the two functions F and G with F (ABCD) = AC + BD + CD. G.(ABCD) = AB + AC + B'CD +
BC'D, Fy(ABCD) = A’BCD’ +AB’C’D,and 4{ABCD) = A’BC. Denote the designation number of 4 function by
adding a = sign before the Tunction symbol. For instunce, the designation number of F (ABCD) is denoted by
=F_(ABCD). Then,

=F (ABCDY = 00010101 00110111,

#F ,(ABCD) = 00000010 01000000,



—

g

o’i(}c(/\l{(‘l)) = 00010100 O0LTTETL,
«‘:()d( ABCD) = 00000011 00000000.

The mask is 00000011 01000000.
By compuring =F (ABCD) and #G (ABCD) with musk bits (i.e.. bit positions in which the mask has a 1)
ignored, we see that F and G are not equal but I implies G.

When the variable sequence of G is chauged to ADRC. the designation numbers of G oand G are

d}c(Al)ii(') = 00000110 OFLI01 L1,
:(}d(/\l)li(') = 00010001 00000000,

The mask. which s the bit-wise ORing of =F(ABCD) wid =G (ADBC). is 00010011 01000000, Under this new
mash. =F (ABCD) = =G (ADBC). Theretore. F and G are equivalent.



4. BOOLEAN EXPRESSION MINIMIZATION

4.1 INTRODUCTION

The design of a combinational logical network generally involves two steps. In the first step, the desired
relation between the input and output signals is stipulated, from which a Boolean expression which represents
the network function is derived. There are, in general, numerous different Boolean expressions which are
equivalent in that they all repeesent the same network function. Therefore, in the second step, calculation may
be performed on the expression obtained in the first step to obtain the “minimum” equivalent expression. This
second step is termed the minimization or the simplification process.

An equivalent expression is a minimal expression if one of the following three minimality criteria is satisfied.

1. The minimal expression is the expression with fewest literals.

to

- The minimal expression is the expression with minimal sum of literals and terms.

‘o

- The minimal expression is the expression with the fewest terms. provided another

expression does not have the same number of terms and fewer literals.

Quine'? showed that under any such criterion, the minimal expression is a disjunction of certain products called
prime implicants. The minimization process, therefore, involves first obtaining the set of prime implicants and
then choosing the: best irredundant set of prime implicants based on the minimality criterion used.

The process of obtaining the absolute minimum expression is a complex and time consuming computation
process. mainly because for some expressions the number of prime implicants is very big"®. It is quite often the
case that the hardware cost saved by finding a minimum circuit is far less than the cost of finding that circuit,
and a nearly minimum, not the absolute minimum circuit, which is rapidly found is the most economical. Thus
our primary concern is to find an algorithm for obtaining an approximate minimum form with emphasis on the
speed of computation and memory 1equirement.

The techniques of minimizing Boolean expression can be classified as map methods'*, tabular methods' 2+ 13
and cubical complex methods' S+ 16, Map methods are satisfactory for functions of no more than six variables.
The tabular method and the cubical complex method are more suitable to machine computation. Moreover, the
usefulness of these two methods are not limited by the number of variables. The approximate minimum method
which is the main subject of this chapter stems from the cubical complex method. Therefore, this chapter will

begin with a brief discussion of cubical complexes.
4.2 CUBICAL COMPLEXES

A geometric representation of a Boolean function is obtained by mapping a Boolean function of n-variables

onto the n-dimensional unit cube. We set up a coordinate system on the n-cube with coordinates (e, €y mve)
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where ¢, = 0, 1. We then make the correspondence between the fundamental product X, 'x, ? - X, "and a
¢ ; = Ci_ . =
'y y PR, ) = - . = =
vertex (e, €yy e ), where X; X, if e; =1, and X; x;"if e, =0.
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Let Z, represent the space of Boolean elements O and | . Then the space of n-tuples of 0's and s is the
Cartesian product .szlzx----xZ2 of n Z,'s. This Cartesian product, representing tlie n-cube, is designated by
Z,". Then a Boolean function is a mapping of Z," into Z,, Z,">Z,. The elements of Z," (i, n-tuples of 0’
and 1's) which map to the element 1 of Z, are called O-cubes or ON-vertices. Two O-cubes are said to form a
I-cube if they differ in only one coordinate. Titus, the two O-cubes 101 and 111 form a l-cube represented as
Ix1. where x means that the entry in the second courdinate (also called a component) can be either a 1 or 0.
The O-cubes wliich form a t-cube are called faces of the l-cube. The x indicates a free component, and the
others are called bound. The space of all O-cubes is denoted by K°, and the space of all 1-cubes is denoted by
K'. Two 1-cubes of K' form a 2-cube if the free component is in the same coordinate for both 1-cubes and if
exactly one bound component disagrees. The 1-cubes which form a 2-cube are called opposite faces of the
2-cube. The space of all 2-cubes is denoted by K2. This process continues inductively to give K", the space of all
r-cubes, 0 <r < p.

The operations of obtaining the faces of an r-cube and obtaining an r+l-cube from K' can be formalized as
follows:

Let (ul. dyo =) = ¢’ be an r-cube, a4, = 0. 1 or x, and there are r x's. Then we can find the faces of ¢

with the i-th face operator.

(aiv =0 ai—l’ P ai+l » T an) if ai =Xx

aip(al ’ azy = an)
o if a, # X

where p =0 or 1. We can find a cube ¢"*' with the i-th coface o erator
p P

(@, - a,_,,x, B> =) =c™ifa # xand ! C K(f),
6i(al o) az, - an) =

¢ ia; =xorif ' q Kf).

The cubical complex of function f, K(f) is defined as the collection K% K', - K", -, K" and the face and
coface operators. A cubical complex is, therefore, an algebraic system made up of algebraic operations and
collections of cubes.

Based on the cubical complexes, some of the operations which are useful in obtaining prime implicants, and

essential prime implicants are discussed below.
4.2. Star-Product (Consensus Operation)

The star-product of two cubes can be defined through the *-product of coordinates of the cubes. The
coordinate *-product is defined by Table 2.
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Table 2
Coordinate *-Product
Let " = Grpo o ce=ca™ ) and O = (b by by be cubes of o complex K. To form the *.product ¢" * ¢,

forma *b for I <i1<n lfy *o =y for more than one i, ¢ * ¢ = o, if at most one y appears then
1 I ] ] * - ‘p
S = (m€a, *bo)omta, *b) o, mla, * b)),
where m(u' w hl) in
miQ) =0,
mity=1.

mx)=my) =x.

Figure 3 gives several illustrations of the *-product.
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ustrations for *-Product of Cubes

Figure 3
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The *-product ¢ * ¢ geometncatly as the Eigest cube ¢! (o t-cube) whieh hs opposite (1 | )faces in ¢ and ¢,
respectively, I the value of ¢ * ¢ 9. no such ¢! exists. The *-product thus has the potentiatity of findig a
new cube ¢! which falls between cubes of and ¢ o which may include ¢ or ¢, Several properties of the
*-product e hsted in the toltowing.

T =0 ¢ commutative

K b °n o H b 9 N
2¢O (PR ponassociative

3T then o ¥ =

400" et = tand CCe then 6|.c’ # ¢. for some i, some ai"c‘ # ¢, some sequence
of &, vperations on ¢ will produce ¢'. and some sequence o.p operations on ¢! will

produce ¢".

o . r . . ¢ 4 = + =
ST und €2 are opposite faces of some cube 'othen 1 T2 =t s b,

where i1y the coordinate in which ¢ and "2 differ.
4.2.2 Sharp Operation (=operation)
This operation 15 a sort of subtraction operation, and wilt be described for any two cubes. Note that if we

Form azb, where a and b are cubes, we obtain the set of subcubes of a which is not inctuded in b. To give an

algebraic defimtion we first define a coordinate =-operation as given in Table 3.

i | X
I.I F y X
! y 7 b
X | 0 z
Table 3

Coordinate #Operation a, #b,

Note that this operation is non-commutative (that is, a # b, # b, # a,).
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To describe the #-operation between two cubes, let

¢ = (a0 ea ) and = (h . b, e, b").

"ita, =b =y forany i

o if a, £b =z for all i

fzt= Va0, a4 -, a ), whe
P Voo e a a, ). where

4 = hi =q = 0 or I and the union runs

over all such i.

for example. xxx = 11 = Oxx L x0x.

The following properties of the =-operation follow immediately from the definition.

Ld==citdN et =¢

3" = #F = non-commutative.

=M ed 2l 2 =) nonassociative.

The =-uperation cun also be shown to satisfy tie distributive laws:

S U MEd = MU ) and

6. (FNM2d=("#MHN (%,

and also the following type of commutative law;

T #)y gt = (" rd) e
4.3 PRIME IMPLICANTS OF A BOOLEAN FUNCTION
A prime implicant a of a Boolean function f is a product which has the following properties:

I. aimplies f (i.c., a is an implicant of f)

2. If Bis obtained by deleting any literal froin a then 8 does not imply f.

In terms of cubical complex, a cube z of a complex K is a prime implicant of the complex K if there exists no

other cube in K which includes z.



Quine-McCluskey tabular method' 2+ ' and iterative consensus method'®* ' are the two most commonly
known metliods of obtaining the complete set of prime implicants of the given Tunction. These two methods
generally require large amounts of computation.

Since only an approximate minimum expression is 10 be obtained, u complete set of prime implicants is not

required. Rather, prime implicants of major concern are those obtainable through enlargement of certain cubes.

4.3.1 Quine-McCluskey Tabular Method

This method is based principally on the theorem XY + XY’= X. The first step in this method is to transform
the expression (10 be simplified) into the canonical sum form. The preceding theorem is then applied
exhaustively to obtain all irreducible tenms, that is, terms to which the theorem cannot be further applied.

The theorem is applied first to all possible pairs of terms. Two terms to which the theorem can be applied
will reduee 10 one term with one less literal, For example, ABC + ABC’= AB. Next, all terms reduced by one
literal are examined to see whether they can be combined further, by the application of the theorem, into a term
with still fewer literals. This procedure is continued until no further terms cun be combined. The resulting
irreducible terms are called “prime imphicants.”

This procedure is more conveniently carried out with binary representations of product terms (called binary
terms) than with the algebraic expression itself. The first step is 1o construct a table by writing down binary
terms of the function. These binary terms are grouped yecording to the number of 1's contained. and the groups
are arranged consecutively in the order of increasing number of 1. Arranging terms in this way. it is necessary
only to compare terms in one group with terms in an adjacent group (i.c.. the group containing terms with one
more ) in order 1o apply the theorem XY + XY’= X. The terms that can be combined are “checked off™
signitying that they are not prime implicants, and the new terms obtained through combination are written down
in a new table. When the comparison hetween terms of every two consecutive groups in the first table is finished.,
unchecked terms are corresponding to prime implicants.

Terms in the new table are then compared for further combinations. A *<" (indicating a missing literal) in a
term must match with a”="" in another term for them 1o be combined. New terms are arranged into a new table
again, and the process is repeated until no new table is created. At the end of the process. unchecked terms from

all tables correspond to all prime implicants of the function.
4.3.2 lterative Consensus Method
To apply the iterative consensus method. the given Boolean expression must be in the sum-ol-products Torm.

The theorem XY +X’/Z= XY +X'Z+ YZ and X + XY = X form the basis Tor this method. Let P = XY Y=y

and Q = x“l.l Zy-=2 , where it is possible that Y, =7 for some i and j. The consensus of P and Q (i.e.. the star

m

product of cubes corresponding to P and Q). also written as P * Q. is delined to he Y1 Yy YmZ 2y=2, (With
any repeated literals removed) unless y;, = Z'j' in which case the consensus is said not 1o exist, Quine'? showed
that successive additions of consensus terms to a sum-ol-products expression and the removed of terms which are
included in the other terms (by X + XY = X) will result in a complete sum which is the sum of all prime

implicants.



This procedure can also be implemented as a tabular method using binary terms. The method involves the

follewing steps:

Lo Each term of the wble is compared with cacli term above it in the table.

2, 0 any term is found to be included in anothe terin, the included term is removed

from the table,

3.1 any two terms have a consensus. the consensus term is compared with all other
terms of the table and then added at the bottom of the table it it is not included in

any other terms.

4. The process terminates when every term has beer compared witl all terms lower down
in the table. The terms which remain in the table correspond 10 all (he prime

implicants.

4.3.3 Cube Enlargement Method

Although the Quine-McCluskey tabular method is straight forward and cun be casily implemented. it assumes
the given expression to be in canonical sum form. When the canonical expression contains numerous terms. the
size of the table becomes inconveniently hig, and the process becomes a time consuming computation. The
iterative consensus method requires only that the expression is in sum-of-products form. Therefore., it generally
has a smaller table to begin, but the process is more involved. Both methods calculate the whole set of prime
implicants. For a certain class of functions the number of all prime implicants, may be very big. For example,
consider a function of 3k variables with a cubical complex containing all cubes having exacetly k coordinates
equal to b, k coordinates equal to 0. and k coordinates equal to x. It is casy to see that each of these cubes
corresponds to a prime implicant of the function. Therefore. for this special class of functions the number of

prime implicants is

3kN\ /2k (3k)!
k k (k')?

which is 1680 for k = 3. Consequently for such functions both the Quine-McCluskey tabular method and the
iterative consensus method are very inefficient.

Quite often it may not be neeessary to obtain a minimum form, cither if' the minimization process becomes
tedious and time consuming or if the cost of the circujt is not of primary concern. Hence an algorithm of finding
an approximate minimum based on the cube enlargement is developed.

In the cube enlargement method. the given function must be expanded into g sum-of-products form first as in
the iterative consensus method. The method will be described in terms of cubical complex, and don't cares will

be considered also. This method is a modification of Miller’s Local Lxtraction Algorithm'®,
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Let € be the set of all ON-cubes (corresponding to products in the expanded torm), and K, be the cubical
complex of €. Also let D be the set of all don't care cubes (corresponding 1o products of the don't care
tunctior), and N, be the cubical complex of D .

The procedure involves the following steps:
L. All cubes of C, are arranged in the order of increasing number of x in each cube,

2. Let ¢f = (¢)v¢ys e ) be o cube of C . and ¢, be the first non-x component. Form

A T Gy Xy e ) and & = (). ¢y, e e Gy ),
where @ = 0 if ¢ = band @ =11l ¢, = 0. Then check to see if 7 is in the cubical
complex k, = KU N,. This cun be done by using the =operation. Thus, ¢ #
«c, c'){ 'D Y = ¢ tempry), il and ony if 2 s in K,. Il 7isin K,. " is replaced by
7 and the operation is repeated on the next non-x coordinate of 7. If 7 is not in K.

we try the same operation on the next succeeding non-x coordinate of ¢,

This process of expanding ¢ is continued until all non-x coordinates have been tested. The resultant cube is the
prime implicant enlarged from ¢*. After applying the second step to each ¢ of C,- the prime implicant cover &
of K, is obtained. The number of prime implicants obtained is less than or equal to the number of terms in the

original sum-of-products expression.
4.4 APPROXIMATE MINIMUM COVER

A minimum expression is the sum of an irredundant set of prime implicants such that one of the minimality
criteria iy satistied. To find an absolute minimum expression, one has to find the whole set of prime implicants
which in some cases is terribly big. To find an approximate minimum, we need only the set of prime implicants
obtained by cube enlargement. The procedure of obtaining an approximate minimum cover from this set of
prime implicants is as follows:

Let C, be the set of prime implicants obtained by means of the cube enlargement method. We wish to find 4
minimum cover which is o minimum subset of prime implicants in C, such that every vertex in K" is covered by
some prime implicants in the subset.

The first part is to find if any cube ¢ of €, covers some vertex in K,, which is not covered by any other cube

in C,. A cube ¢ is of this type if
c#D, #(C ) #¢ (44.1)

such a cube is called a pyeudo exsential prinie implicant, and it must be included in the approximate minimum

cover. The set of all pseudo essential prime implicants will be denoted by F,.

The second part is 1o find the approximate minimum cover by iteratively choosing cubes in ¢, - F,. In

selecting cubes from ¢, I, bigger cubes with larger number of vertices not cover by F, and D, are



preferential. This is because y bigger cube has fewer literals, and vertices not covered by F, and D, ure
ON-vertices which must be covered in the minimum cover. This preference in selection, can be accomplished by

ordering cubes in ¢, E, according to their cost factors. The cost factor of a cube q is defined as
B=2"+k |a|

where 2" is the number of vertices in cube q (r is the dimension of cube q),

K is u weight,

and ['a | is the number of vertices in a. which is the set of s vertices not covered by FI and D . namely
= 2
a=q#D, # F, (44.2)
To facilitate the sclection, cubes in C, — F, arc arranged in the order of increasing cost factors. This list of

cubes is then followed by the list of cubes in D, and the list of cubes in F, to form a linear array as shown in

Figure 4.

Cubes of C,  F, urranged downward

according to increasing cost factors.

Cubes of D0

Pseudo essential prime implicants

(cubes of F ).

Arrangement of Cubes for Obtaining an Approximate Minimum Cover

Figure 4

The selection algorithm is as follows:

L. Starting from the first cube in the array, each cube in the first list is #-operated by

every cube below it in the whole array.

2. Whenever an empty result is obtained in a chain of #operations, the cube under
consideration is discarded and then pick up the cube immediately below it for

consideration.

3. If what results from the complete chain of #-operations is non-empty, we must select

the cube under consideration and move it to the bottom of the third list.



4. The process terminates when the last cube in the first list has been considered for

selection.

When the process stops. the set of cubes in the third list corresponds to the approximate minimum cover.
The designer can choose a minimum cover with fewer literals or fewer terms by adjusting the weight k. In
general, if a design with fewer terms is preterred, a higher weight should be used. Conversely, if a design with

fewer literals is preferred, a lower weight should be used. Weights of %, 1, and 2 are used in the implementation.
REMARK

Two chains of #-operations are carried out during the minimization as implied by equations (4.4.1) and

(4.4.2). They are rewritten in the tollowing:

C#D0 #((‘l c)=¢ (44.1)
qQ#D, #Fl =a (4.4.2)

where ¢ is in C, and q is in ¢, F,.
Since a cube in ¢, F, is also in C, . the computation of (q # D_) can be saved if the‘intermediate results
(¢ # D, )s are stored during the computation of equation (4.4.1). In general, however, because ¢ #D, isnota

single cube, a large memory is required to store all (¢ # D J's.
4.5 PROGRAM IMPLEMENTATION

Since the LINC is a binary computer, each bit can only represent either 0 or 1. But a variable in a product
may be true. not, or missing. Hence two memory words (or bytes) are required to represent a product (ie., a
cube). For example. in the case of three variable functions, the product AC’(ie., 1X0) is represented by the two
binary words 100 and 010. In the first word a | represents a I, while a O represents either a 0 or an x in the
binary representation of the product. In the second word a 1 represents x. while 1 0 represents cither a | or a 0.
The first word is denoted by N and the second word by P in the flow chart of the minimization program given
in Appendix 7.2. This internal representation is called the N-P representation. As the first step of the
minimization procedure, product term is transformed into its N-P representation. After the minimum cover is

obtained, the N-P representation of each cube in the cover is trunsformed into a product term.
4.6 EXAMPLE

Consider the Boolean function F with F_ and F, given as follows:
F (HG,EABCD)=H'AB'C'D’ + H'E'A’BC'D’ + H'G’E’'A'BC'D’ +
c H'G'A'B'CD’ +H'A'B’'C’'D’ +G'E'ABD’ + G'EBCD + H'G'E'BD +
H'G'A’BCD

F4(HG.,E,A,B,C.D)=H’E’A'BC'D + H'GA'B’CD



Fhe prime imphicants obtained through the cube enlargement are

PR ATBC!
HE'AC'D!
H'A'B' D!
H'G'A'BCD
HB/C'D!
G'E'ABD
G'EBCD
H'G’ L' BD.

e approximate nunmum cover obtained is

HE A'BC!
HHA'B'D’
B C'D’
G'E’ABD
G'EBCD
H'G’E'BD

where the first five are pseudo essential prime implicants, The approximate minimum expression is then

H'E'A’BC’ + H'A’B'D’ +H’B'C'D’ + G'E’ABD + G 'EBCD + H'G’E’BD.

4.7 CONCLUSION

Many Boolean expression minimization algorithms have been developed in the past. almost all of them are for
obtaining absolute minimum expressions. Due to the following reasons, however, it is sometimes not preferred 1o
obtain the absolute minimum expression.

1. The computation is time consuming and requires large computer memory.

2. The switching circuit realizing the absolute minimum expression is sometimes the most

unreliable circuit

3. Redundancy is sometimes added to increase reliability and check out capabilities.

Therefore, it is often more preferable to compute an approximate minimum expression than an absolute
minimum expression. For this reason, the algorithm  for obtaining an approximate minimum expression is

developed.
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Fhe algorthims presented - Sections 4.3.3 and 4.4 lave been implemented on the LINC computer. These
aleorithms, however, are useful i any bmary machine. In principle. there is no limitation to the number of

varables of a Boolean function,



5. COMPUTER EXPANSION OF BOOLEAN EXPRESSIONS

5.1 INTRODUCTION

hi computer mimmization of Boolean expressions, it is generally assumed that Boolean eXpressions are given
- canonical form (ie., sumcof-minterms form). normal form (i.e., sum-of-products form), or their equivalents.
Since 1 practice Boolean expressions as they are originally given are very often not in the assumed form, it is
necessmy to preprocess them by expanding them into the assumed form, Although relatively casy and straight
forward, this process could be troublesome ad become a source of error if performed manually, Therefore, this
process is an essential step in the automation of Boolean expression minimization.

Mmimization methods can be classified into two categories according to whether the canonical form expansion

' or simply & normal form expansion is required!® 18, Generally the amount of computation

is required 12"
and memory needed in the minimization process is proportional to the number of terms in the expanded
expression. Therefore methods of the second category are more suitable to computer processing where the
normal form expression obtained has considerably fewer terms than the canonical form expression has. This is
very often the case if the normal form expression is obtained by applying DeMorgan's theorems, associative laws,
and distributive laws. Accordingly the development of efficient computer algorithms 1o perform this normal form
CXpansion is important,

Computer algorithms are presented in section 5.2 for applying DeMorgan’s ticorems algebraically to any
Boolean expression containing “AND.” “OR.” and “NOT" operators, The resulting expression can then be
expanded ulgebraically into a normal form expression by applying associative laws and distributive laws. using the

algorithm of section 5.3. Main features of these algorithms are:
I, Each algorithm is a one-pass algorithm.
2. Euch algorithm is syntax-oriented.

5.2 ALGORITHMS FOR APPLYING DEMORGAN'S THEOREMS

Boolean expressions given are assumed to be in the most commonly used infix form as defined in subsection
2.3.1. In this form, DeMorgan's theorems can be written as (X+Y)'= x ! y!'and (XY)!' = X' +Y',

The Boolean expression is scanned backward from the end (i.e., from right 10 left), and DeMorgun’s theorems
are applied whenever applicable. Two different algorithms which perform this process are studied. They act as
syntax analyzers and transform the expression almost symbol by symbol in one pass. They are given in Backus

20

Normal Form*” with output imbedded as shown in algorithms 1 and 2.



Algorithim 1;

<expression> = <tcrm>{ + 47 <tenm> )
<term> L= <fuctor> <<f;|clor>}
<tactor> 1= <variable>  [the same variable]/
"wvariable> |’ and the same variable]
b <expression> (- [U(7]/
') <c expression> (
<c expression> = -( <single variable> / "] <c¢ term> I(I)
{+ ( <single variable> / [*)"] <¢ term> I(])}
<vterm> = < factor >4+ the curremt <c factor>
ymbol is not + or (
<¢ factor> 1= wvariable> | " and the same variable}/
" <wvariable> [the sume variable] /
) <c expression> (]
") <expression>
<single variable>* 1 = <variable> ( +/( )** “7* and the same
variable
L <vuriublc>( +/4( }** [the same variable]

<variable> = A/B/C/ ... ... ... /Z

*A false return from the <single variable> routine causes the input string pointer to move back to the place it has

upon entering this routine.

** A successful recognition of + or (at this point does not cause advancement of the input string pointer. This is the

only exception to the general rule of ¢dvancing the input string pointer.



Several metalinguistic symbols are used here and in the following algorithms. < > denotes a syntactic class.
- = means “is defined as,” and / nas the meaning of “OR.” ‘ denotes iteration, i.e., zero or more concatenated
occurrences of the contents of the bruckcls.( )dcnmes ordered alternation, i.e., the first alternation is taken first
if applicable, otherwise take the second alternation, etc. | ] denotes symbols 1o be put out or actions to be
taken. In all algorithms. a successful recognition of a symbol causes advancement of the input string pointer by
one symbol position (i.c., get next symbol).

When this algorithm is applied to the input expression
((A+B)C+D )" + C((A+B) ‘D)’ + ((B+C) ‘D)’
the output expression is
(A'B’+C")D + C(A*B+D’) + (B+C+D’)

Redundant parenthesis pairs in the input expression are acceptable. and they will appear in the output expression
also. Moreover, as shown in the third term of the output expression, the algorithm generates a type of redundant
parenthesis pair even if the input expression is free from redundant parentheses. This type of redundancy is
inevitable for a unidirectional-scan one-pass algorithm. This is so because, as one might have noticed by
comparing the last two terms of the input and output expressions, the algorithm would not know that there is
no other factor in the term when it scans the factor ((B+C)’' D)’ in the third term.

In cases where the generation of more redundant parenthesis pairs is tolerable, a stightly simpler algorithm,
given as algorithm 2 in the following, can be used. When algorithm 2 is applied to the same input expression it

generates
((A") (B)+C’) (D) + C((A+B}*D’ )+ ((B+C)+D ).

It is to be noticed that this algorithm produces redundant parentheses around single variable factors. In fact the
purpose of having the syntactic class <single variable> in algorithm 1 js mainly to eliminate this kind of
redundant parentheses. Though redundant parenthesis pairs are harmless, they not only occupy memory but also
make the output expression look clumsy. When this process is followed by the algorithm for applying associative
faws and distributive laws to be discussed in the following section, all parentheses will be removed eventually.

Excessive number of redundant parentheses, however, will decrease the efficiency of that algorithm greatly,
5.3 AN ALGORITHM FOR APPLYING ASSOCIATIVE LAWS AND DISTRIBUTIVE LAWS
Associative laws are
(X+Y)+Z=X+(Y+Z‘,=X+Y+Z,

and (XY)Z = X(YZ) = XYZ.
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Algorithm 2:

<expression> .= <term> { + ["+7) <term>)
<term> :: = <factor> {<fucu)r>}
<factor> i = <variable> [the same variable] /
" <variable> [*'" and the same variable] /
)T <eexpression> (%]
) %)) <expression> (- [*("]
<c expression> 1= <c term> { + [*C L)) <e term>}
<c term> 1 = <¢ factor> { [*+"] <c¢ facmr>}

<c factor> . = <variable> [*'" and the same variable] /

-

<variable> [the same variable] /
") )] <expression> ([*() /
) 1Yl <cexpression> ( [*(”]

<variable> 1= A/B/C/D/ ......... /Z



Distributive Laws are
X(Y +Z)= XY + XZ,
(X+Y)Z=XZ+YLZ,

and (X+Y)(X+2)=X+YZ.

The expression obtained from applying any algorithm of the previous section is the one to be processed by this
algorithm. The expression is scanned unidirectionally from the beginning (i.e.. from left to right) in one pass, and
one of these laws is applied whenever applicable. The algorithm, given as algorithm 3, analyzes t'.¢ syntax and
processes the expression with the aid of a pushdown stack (called the primary stack) of component stacks (called
secondary stacks). The stuck structure 1s shown in Figure 5. und the algorithm is again given in Backus Normal
Form with actions imbedded. A cell of the primuary stack stores a secondary stack pointer, while a cell of a

secondary stack stores an item.

Algorithm 3.

<expression> I =<term> [output operation)
{+ [*+7] <term> [output uperation]}
<tern> .. = <factor> [pushdown the primary stack]
<factor> | }. * operation

2. pushdown the primary stack, if

the current symbol is not )
<factor> :! = <primitive> / ( <p expression> )
<primitive> . = f<vuriable> | <variable> ')

store the primi-
: tive as an item

<_variable> | <variable> ' 2| to the top
secondary stack

<p expression> = <term> [ + <term> 1. + operation

pushdown the primary
stack, if the current
symbol is +

(3%

<variable> 1= A/B/C/......... /Z
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The output operation prints out each item m the top non-empty secondary stack as a product term with a +

sign between every two terms. hir cases where the cubical cover corresponding to a normal form expression is to

be obtained  dweetly. the  ourput operation ;gwlly for  transformation of these items into their cubical

tepresemtations and stores them away. The «@operation and the * operation hoth operate on the top two
.

non-empty secondary stacks. Let the top nffli-‘cmply secondary stack :amd the one immediately below it be

denoted by S, and S, respectively. The + operation transfers all items in S, to S, clears S, by moving its

pamter to the bottom, and then moves the primary stack pointer to 5,. The * operation consists of the

following two steps:
L. Delete items common to S, and S, and record these items in g temporary storage.

= Distribute cach remaining item in S, to all remaining items in S, . transfer all items in
the temporary storage to S, clear S, by moving its pointer to the bottom, and then
move the primary stack pointer to S,. I the distribution process, the multiplicative
complementarity biw (XX = 0) and the multiplicative idempotence low (XX = X) can

be applied.

Thus. it the stack contents and pointers at some stage of the process are as shown in Figure 6(a), then they
become as shown in Figure 6{b) alter the + operation. After step T and step 2 of the * operation, they will be as
shown in Figure o6fc) and Figure 6(d) respectively,

To help in understanding  this algorithm - some  key steps in the process  of applying it 1o the
expression((A+BICHDIE+F )G will be explained. After D s recognized as a variable, the input string pointer
moves to the next symbol, and D is stored as an item in the top secondary stack. At this stage the stack
contents and pointers are shown in Figure 7(a). After D is recognized as a term and the + operation performed,
they become as shown in Figure 7(h). Since the symbol pointed by the input string pointer at this time is), it
recognized C+D as a p expression and (C+D) as a factor. The * operation is then performed, and the stack

contents and pointers become as shown in Figure 7(c).
5.4 PROGRAM IMPLEMENTATION

The flow chart of the Boolean expression expansion program is shown in Appendix 7.3.
5.5 CONCLUSION

Three computer algorithms have been presented; two for applying DeMorgan’s theorems and the other for
applying associative laws and distributive laws. By using these algorithms any well-formed Boolean expression
containing “AND.™ “OR.,™ and “NOT" operations can be expanded into its normal form in two passes. These
recursive algorithms may not be most efficient 1o achieve their goals, yet they are easy to understand because
they are syntax-oriented. They have been programmed and tested on the LINC, and the whole program occupies

less than a thousand 12-bit words of memory.
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Symbol munnpulation fanguages sucl as SNOBOL?! and FORMAC? can be used to program the expansion

of 4 Boolean expression with relative ease. Aside from the necessity of a big machine to run a general symhol

nanipulation linguage, however, speciad-purpose algorithms such as these are tndoubtedly much more efficient.
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6. CONCLUSION

Aset of computer oriented algorithms useful n logic design autonmation has heen developed. These algorithms
are progranumed on - the FINC computer as a set of seven 1outines. The routines can be used independently or
ity Figure 8 explainy how the routines can he linked together to form a computer aided logic design system.

e the figure, each oval box represents a1 toutine white eacls rectangulur box indicutes the form by which a
Boolean funcuon is represented. Flie double-lined arrows indicate entry points. Fhe system can be entered from
four ditferent entry points.,

I principle. the application of these algorithms is not limited by the number of variables. During the
development, particular attention has been puid to generality, modularity, and machine independence.

Some possible futuie extensions of this researeh are:

. Solution of Boolean equations using designation numbers.

20 Petectuon of functional equivalence resulting from complementation
of variahles,
30 Analysis and synthesis of sequential circuits.
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APPENDIX 7.1

The Flow Chart tor Transforming a Boolean Expression into

the kEarly Reverse Polish Form

©

[=®

GETS

Yes CS — 0S Stack
routine
@ == by 1 1]
Yes

XY=0821 J

XY=0422 P RP=]

Mo
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Stack routine

store return
address

E=—=05

delete E return

Notations

CS: Current input symbol
V: Variable flag (set to | when CS is a variable and reset to 0 when CS is ), t.or ® )
RP: Right parenthesis flag (set to 1 when CS is a right parenthesis, and reset to 0 when CS is +
or @ )
0S: Output string
EOL: End of the expression
XY: Y and X denote an operator and its hierarchy number respectively
E: Top element of the push-down list N
H(E): The hierarchy number of E
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APPENDIX 7.2

The Flow Cliart for Beolean Expression Minimization

|

Term to N-P transformation for each cube
of the expression to form C,

NVF = number of variables of the
function

l

Count number of cubes in CO and
denote it by NOCC

|

i 4

Count dim for each cube in (‘0,

dim = number of 1’s in the P-word of

a cube

:

Arrange all the cubes in C, according

to increasing number of their dim's

:

Set NOCT=0

‘
O
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:

NUTED

J

Copy. Pavdd i r

i

Capy Mewond o "li.

|

Obtain ¢’

1

Obtain 2z

I
®

NOCT: No. of cubes tested
NCT: No. of components

tested

A S .
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Copy the N-P words ol 7 to the
N-word und P-word respectively

NCT = NCT+i

No

Yes

A prime implicant is obtained
store away N-word, P-word

BT =MW

If ¢i=d ,Jis deleted

¢'. ¢ are prime implicants.
The set of prime implicants is

denoted by C,.

v
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Approximate Minimum Cover

The number of cubes in C
is denoted by NOCC

v

NOCT=0
NPPI=0

*

Get a new cube from ("

v

NOCT=NOCT+1 l

M

Cube ¢ is a pseudo prime

implicant then store it away

!

WP =NPPI+

NOCT=NOCT

NPPI: Number of pseudo
prime implicants



®
|

Denote the set of pseudo prime
implicants  obtained by F,

l

Obtain cubes in ((‘I FI)
NC2=the no. of these cubes

!
-2
NOCT=0, assign a value to k

_d

Get a new cube q from ((" ~F|)

)8

NOCT=NOCT +]

Y

Perform the operation
qQ#D, # F,=a

1

Calculate | a | = number
of vertices in «

!

Calculate the cost factor for cube q
B=2"+k * |ai

J

LTTITICI

by 171
MNOCT=M("2
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l

Arrange cubes in (Cl—Fl), D, and F, into

a linear array as shown in Figure 4

]

NOCT=0

4‘[

Get a new cube q from the Tirst list

|

NOCT=NOCT+I

.

Cube qis #* operated with ecach
cube below it in the linear array

Move cube q to the bottom
of the linear array

M

MOCT=NC2
1

The cubes contained from F, to the
Bottom of the linear array corresponds to
the approximate minimum cover
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APPENDIX 7.3
—_—

The Flow Chart far Boolean Expression Expansion

I Applying DeMorgan's Theorems
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Notations
FAML-LE L)

1OL: Termumating symbol of a Boolean expression
GETS: Read next input symbol
s Poivter points to the input symbol under exammation
CS:  The <umrent symbol

+: “OR™ operator

' “NOT™ operator

Vi A variable of the Boolean expression

templ: v temporary storage

Remark

I thns flow chart, an oval box indicates the entry of a syntactie class, and dot-lined rectanguln box indicates
the exat from one syutactic class to another syntactic class. A pish-down store 1s set up 1o store return addresses.
The top entiy of the pushi-down store is always the suceessful return address. while the next 1o the tap entry is

alwavs the false return address.
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2. Applying Associative and Distributive Laws

E—05
—t
No
FTR=PFTR=*1]
seurch  for iop
piig Py awceomd-
ury u._r:h. 5 l
TAD wf e, =BAD of 5,
FTR=RALY of 5,
l Yen
E=content of FTR
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Yes * operation
YT — 5 Yes
|
Mo M
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—
bp expression> 1

b

1 elements in s are
| g0 to 1 ' !
I <term> | transcribed one by one
| S, |

, - = to the top of s,
g |

TAD f !|=EM.I'.| af .

.

by (1]
Yen i
— O
LETS
1 Yes
[N
[T
Il ﬂ!:':m& J Panfi down
L e premury  stack
find BAD: Bottom address of a secondary stack
ind s ,s
G ) J TAD: Top address of a secondary stack
PTR: Secondary stack pointer
find:  find=1 indicates a primitive is found

get BAD of 5,
and TAD of s

it

©
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